Variable Electron Population of Discrete Metal Atom Clusters of the M₃X₁₃ Type

AVI BINO, F. ALBERT COTTON*, and ZVI DORI*t *Department of Chemistry, Texas A & M University, College Station, Tex. 77843, U.S.A.* Received December 27.1978

The M_3X_{13} type of metal atom cluster (Fig. 1) was discovered as a non-discrete component of the compound $Zn_2Mo_3O_8$ and occurs also in several closely similar mixed metal oxides $[1]$. A simple but effective analysis of the metal-to-metal (M-M) bonding [2] showed that the MO's concerned are as follows:

$$
\underbrace{1a_1}_{\text{bonding}}\underbrace{1e}_{2a_1}\qquad \underbrace{2e}_{\text{anti bonding}}\underbrace{3e}_{2a_1}
$$

This implies that the predominent tendency in such systems will be to use six electrons in a $(1a_1)^2(1e)^4$ configuration to form three M-M single bonds. $\rm Zn_2Mo_3O_8$ exactly satisfies this prescription. Nb₃Cl₈, characterized shortly thereafter as another nondiscrete M_3X_{13} structure, has 7 electrons, but can be understood readily on the above bonding picture by assigning the additional electron to the non-bonding 2a, orbital.

Only very recently has the M_3X_{13} structure been discovered in discrete form. The first example [3] was the $[W_3O_4F_9]^{5-}$ ion [4] and we recently reported [5] the very stable and easily prepared compound C_{S_2} [Mo₃O₄(C₂O₄)₃(H₂O)₃] · 4H₂O · 1/2H₂ · C_2O_4 . In both of these there is a set of M-M single bonds based on the $(1a_1)^2(1e)^4$ configuration. We now report the first example of an M_3X_{13} structure with an 8-electron M-M bond system; it is also the first example of a discrete M_3X_{13} entity deviating from the simple 6-electron system of M-M single bonds.

Experimental

Dichlorotetracarbonylmolybdenum was dissolved in a 1: 1 mixture of acetic acid and acetic anhydride under nitrogen and the solution was stirred for 4 h at room temperature. The red solution was diluted with water, absorbed on a DOWEX 5OW cation exchange column and eluted with 2 M HClO₄. As the orange

- Israel Institute of Technology, Haifa, Israel.

Figure 1. The M_3X_{13} structure. Small black circles represent the three metal atoms, which are bonded to one another to form an equilateral triangle.

Figure 2. The structure of the $[Mo_3O_4(O_2CCH_3)_3(H_2O)_3]^2^+$ ion.

eluate was allowed to evaporate slowly, the color changed to deep blue and dark blue crystals were deposited.

These crystals were found to belong to space group P6₃ with $a = 8.906(6)$ Å, $c = 15.162(4)$ Å and $Z = 2$. The structure was solved and showed the formula to be $[MO_3OCl_3(O_2CCH_3)_3(H_2O)_3]$ (ClO₄)-**Cl. The trinuclear cation, 1,** has the structure shown in Fig. 2. Crystallographic symmetry C_3 is imposed, but effectively the symmetry is C_{3v} . Thus, there are two crystallographically independent Mo-Cl distances, but these are equal within the experimental uncertainties with values of 2.428(S) and 2.425(5) A. Similarly the $Mo-O(2)$ and $Mo-O(3)$ distances are essentially equal with values of 2.06(l) and 2.07(l) Å, respectively. The Mo- $O(4)$ distances are 2.03(1) \AA , while Mo-O(1) = 2.13(1) \AA .

^{*}Authors to whom correspondence should be addressed.

tPermanently in the Department of Chemistry, Technion

This structure closely resembles that of the anion $[M_0_3O_4(C_2O_4)_3(H_2O)_3]^{2-}$, 2, but shows several significant and interesting differences: (1) instead of chelating oxalato ions there are bridging acetato ions; (2) in place of three μ_2 -O atoms there are three μ_2 -Cl atoms. These qualitative differences indicate further the inherent stability of this type of structure despite changes in detail. (3) The one truly significant quantitative difference between the structures of **1** and 2 is in the Mo-Mo distances which have the values $2.550(2)$ and $2.486(1)$ Å, respectively. This difference may be in part due to the replacement of the μ_2 -O atoms by the larger μ_2 -Cl atoms. However, there is another possible cause.

A reckoning of metal valences in **1** and 2 quickly shows that there are *eight* electrons available for M-M orbitals in the former, in contrast to the six available in the latter. The persistence of the M_3X_{13} type structure despite this change in the number of electrons is simply and satisfactorily explained by the availability of the essentially non-bonding $2a_1$ orbital. It is therefore possible to assign eight instead of six electrons without any major disturbance of the metal-to-ligand or metal-to-metal bonding. It is possible that the $2a_1$ orbital might have slightly antibonding character in the $M-M$ sense, thus providing an additional explanation for the small increase in Mo-MO distances in **1** as compared to 2.

Our studies of this and related systems are continuing and this compound will be more fully described at a later time.

Acknowledgement

We thank the National Science Foundation for financial support.

References

- W. H. McCarroll, L. Katz and R. Ward, *J. Am. Chem. Sot., 79, 5410* (1957). See also W. H. McCarroll, *Inorg.* Chem., 16, 3351 (1977) for later references.
- F. A. Cotton,Inorg. *Cbem.,* 3, 1217 (1964).
- We regret the oversight in our recent note (Ref. 5) of the slightly earlier work of Mattes and Mennemann described in ref. 4. It may also be noted that the $[Mo₃S(S₂)₆]$ of Miiller, *et al.* [6] is also of essentially the same structure type.
- K. Mennemann and R. Mattes, *Angew. Chem., 88, 92* (1976); *idem., Z. anorg. allg. Chem., 437, 175* (1977).
- A. Bino. F. A. Cotton and 2. Dori, *J. Am. Chem. Sot., 100. 5252* (1978).
- A. Miiller, S. Sarkar, R. G. Bhattacharyya, S. Pohl and M. 6 Dartmann, *Angew. Chem., 90, 564* (1978).